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Abstract

How much of infant behaviour can be accounted for by signal-level analyses of stimuli? The current paper directly compares
the moment-by-moment behaviour of 8-month-old infants in an audiovisual preferential looking task with that of several
computational models that use the same video stimuli as presented to the infants. One type of model utilizes only signal-level
properties of visual motion whereas the other adds audiovisual integration (either through correlation or instantaneous addition
of audio and visual signals). Together these models account for a significant portion of the variance in infant looking.

Introduction

From an early age, speech is processed through the eyes
as well as the ears. For example, 4-month-olds prefer
synchronized speech when watching a person talk (Dodd,
1979). Likewise, Pickens, Field, Nawrocki, Martinez,
Soutullo and Gonzalez (1994) found that when given a
choice between two videos of talkers, only one of which
matches the audio source, 3-month-olds and 7-month-
olds (but not 5-month-olds) will look at the face
synchronized with the audio. Moreover, 7.5-month-olds
appear able to use this correspondence between what
they see and hear in order to focus their attention on a
particular talker and hear better in noise (Hollich, Newman
& Jusczyk, 2005). Such results suggest that infants are
integrators of audiovisual speech from an early age.
Although such studies demonstrate that infants are
sensitive to audiovisual information, the specifics of how
they track the speaker remain a mystery. In the study by
Dodd (1979) for example, trials were 30 seconds long,
with differences in looking towards the matching display
of less than 3 seconds. Clearly, infants did not spend
all the allotted time looking at synchronized stimuli.
Although such fluctuations in performance are certainly
affected by high-level cognitive skills and/or individual
differences in experience and speed of habituation,
infant looking may also be affected by the nature of the
stimuli. That is, when faced with a dynamic visual
display involving multiple matches for audio, audiovisual
correlations are not absolute. A visual display of a face

does not provide an isomorphic match to the speech
stream. As a direct result, the audiovisual correlation
between sight and sound waxes and wanes. Likewise,
extraneous factors, such as sudden visual movement,
can temporarily make unsynchronized portions of the
visual display highly salient. By knowing the specifics
of the stimuli, we can be much more precise in relating
the stimuli to infant behaviour and can come closer to
understanding the actual mechanisms involved. One
contemporary means to investigate these specifics is
sensory-oriented modelling.

Sensory-oriented models are computational models
that utilize, as inputs, the same stimuli as presented to
infants, focusing on how signal-level details affect behaviour
(Kleiner & Banks, 1987; Lovett & Scassellati, 2004; Prince,
Helder & Hollich, 2005; Sirois, 2005). Sensory-oriented
models provide an end-to-end explanation of infant
behaviour — from raw sensory input to behavioural output.
In the case of audiovisual speech, sensory-oriented models
could allow us to determine the degree of correlation
between the audio and visual streams at any given moment
using the same stimuli as given to children. We might
even find, using such an analysis, that audiovisual
correlations can shift over time — to the point of having
the visual motion of the “‘unsynchronized’ talker temporarily
be more correlated with the audio than the actual speaker.
In such a situation, an infant looking to the “‘unsynchronized’
talker is actually an indication of successful audiovisual
integration. One might never know this without signal-
level exploration of the stimuli.
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Cup Visual

Dog Visual

Cup Audio Condition

“The cup was bright and shiny.

The clown drank from the red

cup. The other one picked up OR
the big cup. His cup was filled

with milk. Meg put her cup back

on the table. Some milk from your

cup spilled on the rug.”

Figure 1
The task is to locate the synchronized talker.

Furthermore, signal-level analysis could help to separate
possible mechanisms of audiovisual integration. That is,
although infants could be computing a running correlation,
noticing how the precise patterns of visual and auditory
changes correspond, infants could also be doing something
considerably less sophisticated: perhaps infant audiovisual
integration involves nothing more than focusing on large
instantaneous changes such as the onset or offset of motion
simultaneous with sound? If a mouth starts moving when
speech begins, adults are likely to connect the mouth with
the speech — even if the match isn’t exact. This idea is
central to the famous ventriloquist effect (Driver, 1996).
Signal-level models can explicitly simulate what behaviour
would look like for each of these cases.

In this paper, we compare the moment-by-moment per-
formance of 8-month-olds in an audiovisual preferential
looking task with several signal-level computational models.
These computational models enable precise estimates of
where an infant might look as a function of the experi-
mental video stimuli at any given moment. Our question
is how much of infant behaviour can be accounted for
by such signal-driven factors? Put another way, how
closely does infant behaviour map to the stimuli?

Infant audiovisual preferential looking dataset

We use an infant audiovisual preferential looking dataset
from the control condition of a study of infant audiovisual
synchrony detection in noise (Hollich, Prince, Mislivec &
Helder, 2005). In this earlier study, infants were exposed
to side-by-side video clips of talking heads while the audio
alternatively matched the video on the infant’s right or
left (see Figure 1).
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Dog Audio Condition

“The dog ran around the yard. The
mailman called to the big dog. He
patted his dog on the head. The
happy red dog was very friendly.
Her dog barked only at squirrels.
The neighborhood kids played
with your dog.”

The audiovisual preferential looking stimuli. Only one audio condition is played at a time, and each lasts 15 seconds.

Participants

The participants were 20 eight-month-olds (M = 8.12
months, SD = 0.52, 9 females, 11 males) with no history
of hearing problems or language delay. Four additional
participants were excluded owing to fussiness (less than
65% total looking time) or fixated looking (looking
more than 75% of the time towards one side).! Parents
were contacted via birth records. Consistent with the local
population distribution, the vast majority of subjects
were from middle-class Caucasian homes, with less than
10% participation by ethnic or racial minorities.

Stimuli

The video clips for the models and infant data were taken
from Hollich, Newman and Jusczyk (2005) and displayed
a close-up of the face of a Caucasian female speaker of
American English as she read two passages (regarding
either a cup or a dog) in infant-directed speech (an
exaggerated, excited manner of speaking that is known to
attract infant attention). These video clips were trimmed
and combined using Apple’s Quicktime Player Pro, to
create side-by-side clips that were each 15 seconds in
length.? The video that matched the cup audio appeared
on the left of the screen, and the video matching the dog
audio appeared on the right. The audio from the movies
was then adjusted so that only one of the vocal tracks

! These values for exclusion are standard for such studies (see Hollich,
Hirsh-Pasek & Golinkoff, 2000).

2 See Cup and Dog stimuli from http://stimbank.talkbank.org/Prince-
Hollich/video-clips.html.



played. This resulted in two, 15-second, splitscreen video
clips, the audio for which matched only one of the clips
(see Figure 1). Each clip was played to each child once;
however, the final stimuli played to infants included
both cup and dog audio conditions as well as two ‘noise’
conditions (not included in our analysis), in which the cup
and dog audio tracks were played along with a distractor
audio (a monotone male voice reading the methods
section of a paper) played at equal loudness. The order
of presentation was counterbalanced across children such
that half of the children heard these noise conditions
first, and the other half heard these conditions second.
Because initial analysis did not find any order effects
(from having heard the noise conditions first), data
regarding the cup and dog conditions (heard in the
clear) from both orders were combined to produce the
dataset used in this paper.

Apparatus and procedure

After explaining the procedure and having a legal guardian
of the infant sign a consent form, the infant was seated
on the caregiver’s lap approximately 45 inches from a
large white screen (65 inches along the diagonal). Black
curtains covered all but the screen and the lens of the
camcorder used to record infant responding. The image
on the screen was displayed by an LCD projector attached
to an Apple computer. The audio was played using an
amplifier attached to the audio output of the computer
driving the display. The stimuli were played monaurally’
through a single speaker set in the centre between the
two videos and were 72 dB in average amplitude. After
the infant was seated comfortably, and the caregiver
blindfolded, the video was played to completion regardless
of infant looking, although infant looking was generally
quite high. Infants’ average looking time per each of
the two passages was 9.48 seconds (out of 15 seconds;
63.2%) with a standard deviation of 2.72 seconds.

Microgenetic coding

Coding of infant looking time was conducted off-line
using video captured from the camcorder (using Apple’s
Quicktime Broadcaster software) and a coding program
written by the first author (Hollich, 2005). This program
allowed coders, blind to the condition being run, to
step through the videos frame-by-frame and mark the
beginnings and ends of each left and right look for the
entire video. These marks were then exported to an Excel
spreadsheet for analysis. Because of the frame-by-frame
nature of this process, this method is highly precise (to

* In this study, we presented the audio monaurally in order to limit the
number of experimentally varied factors and to make it necessary for
infants to use audiovisual integration to succeed. This is not as unrealistic
as it might seem: infants’ localization skills are rather poor and many
objects that have noticeable visual separation would appear to have
identical audio origination from an infant’s standpoint (Muir, Clifton
& Clarkson, 1989).
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within one-thirtieth of a second). Inter-rater reliability
(as tested by random re-coding of 20% of the data) was
above .98.

Of particular interest to the current simulations is the
proportion of infants looking towards the cup video by
frame. This proportion is calculated by dividing the
number of infants looking to the left (to the cup) for
each frame of the video (1/30 s) by the sum of all infants
looking (either left or right) for that frame. Random
looking is thus .5; proportions greater than .5 indicate
looking to the cup video, and proportions lower than .5
indicate looking to the dog video. One would expect
these proportions to be different depending on the
audio. More specifically, the higher the audiovisual
correlation between the audio and the cup video, the
higher the expected proportion for that frame. Although
the fact that one of the videos was synchronized with
the audio would seem to give it an advantage, as noted
in the Introduction, it is entirely possible that, at some
moments, the ‘unsynchronized’ video might have a higher
audiovisual correlation. The computational models allow
us to examine this possibility, as well as providing a
theoretical baseline for where infants would look in the
absence of sound.

Signal-level simulation of infant preference

All models begin with signal-level estimates of activity.
They accept, as input, the same stimuli as presented to
infants. The estimates of visual activity started with two
visual streams (one for the cup display and one for the
dog) in DV format (720 x 480 pixels per frame, at a rate
of 29.97 frames per second). The audio streams (one for
the cup audio and one for the dog) consisted of a single
(mono) audio channel, and used a sampling rate of 44.1
kHz. All signal-level estimates, video or audio, were
normalized estimates of change rather than raw scores.
We chose to consider normalized changes in audio and
visual because of the known normalizing properties of
the cortex (Loritz, 1999).*

Specifically, for our estimate of visual change, we focused
on obtaining an estimate of normalized visual change
(NVC) based on changes in grey-scale pixel intensity (see
Butz & Thiran, 2002).° This method computes the change
of intensity of pixels across three successive visual frames
by ignoring the middle frame and summing a region of
9 pixels surrounding a centre pixel in the starting and
ending frames of this triple of frames. These values are
then subtracted to arrive at an intensity-change value for
each pixel. These intensity-change values were then summed
to produce an estimate of frame-intensity change (FIC)
for each triple of frames. These FIC values were extracted

* Not coincidentally, preliminary analysis indicated that such normal-
ized estimates produced models with a better fit to the infant data.

5 Other estimates of visual change (optic flow, frame subtraction, etc.)
may produce slightly different data. However, preliminary testing
indicated a wide overlap between the estimates.
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Figure 2

using the iSenseStream program® written by the second
author (see Mislivec, 2004; Prince & Hollich, 2005) and
then normalized on a scale from 0 to 1 by subtracting
the minimum FIC value (across the entire video) from
the raw score and then dividing by the FIC max and
FIC min difference:

(FIC) — mingc

NVC = —.
maXg,c — Millge

()

These normalized FIC values are presented in the top
panel of Figure 2.

For our estimate of auditory activity, we focused on
normalized audio change (NAC) values.” These were
calculated for each condition by extracting the RMS
amplitude for each audio frame using the iSenseStream

¢ SenseStream is available on the Internet at http://www.cprince.com/
PubRes/IKAROS/iSenseStream, and is implemented within the Ikaros
modelling framework (http://asip.lucs.lu.se/IKAROS).

7 We intentionally did not include frequency information in these models,
although we suspect this may allow the models to separate streams of
speech.

Estimates of visual change (top panel) and audio change (bottom) across the trial.

program, subtracting these values across each triplet of
frames, and then normalizing the values similarly to
above. These values are presented in the bottom panel of
Figure 2.

Audiovisual correlation model

Given the signal-level estimates thus obtained, there are
several possibilities for simulation of audiovisual integration.
We considered two in our simulations. First, one could
compute a running correlation between visual changes
(as indexed by NVC values for the two sides) and changes
in audio (as indexed by NAC values) over some time
window. Higher correlations between the audio and
visual on one side compared with the other should lead
to greater looking. Notice that this model assumes that the
child would have some memory for the changing patterns
of stimulation over a particular time window.

For this audiovisual correlation model, we computed
two running correlations across 10 or 20 prior frames:
one correlated the NVC values for the left visual with
the NAC values for that audio condition, and the other

© 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.



correlated those same NAC values with the NVC values
from the right. Thus, on any given frame, the model had
an estimate of the degree of correlation between the audio
change (NAC) and the visual change (NVC) values for
the previous third of a second (10 frames) or two-thirds
of a second (20 frames). These correlations were added
to 1 to produce a single, positive number ranging from
0 to 2, where higher numbers indicate greater positive
correlations. We added one because we found it likely
that a strong negative correlation would drive the infants
to look away from that side. That is, if the audio were
changing while the visual was not, that would signal
infants to look elsewhere for the match.

Finally, in this and all other models we then divided
the values for the right by the sum of the scores for the
left and right to obtain a preference score. In this manner,
we had a proportion roughly analogous to the proportion
of infants looking to a given side per frame. Thus, the
final formula for the correlation model was

1+,
A+r)+A+ry)

()

where r, is the correlation between the NAC values for
the cup audio and the NVC values for the cup visual,
and r is the correlation between the NAC audio values
for the cup and the NVC values for the dog visual.

Instantaneous additive model

Alternatively, one could simulate simple instantaneous
additive firing where similar-sized changes in audio and
visual activity lead to greater responding to that side. Such
a model assumes no memory on the part of the child for
changing patterns, and in this manner similar-sized increases
or decreases in audio simultaneous with visual changes
simply make the visual for that side more salient. This
second, instantaneous additive, interpretation is more
consistent with the known behaviour of superadditive
neurons that have been found in the superior colliculus of
monkeys (Stein, Wallace, Stanford & Jiang, 2002), behaviour
which would suggest that audiovisual integration is an
instantaneous activity.

For this additive model, we computed the absolute value
of the difference between the NVC value for each side and
the NAC audio values and subtracted from one. The less
of a difference (i.e. the more the values ‘match’), the higher
the score per side; the more of a difference (i.e. the less the
values ‘match’), the lower the score per side. Again, we com-
puted a proportion to obtain a simulation of preference.
The final formula for the additive model was thus

1-|A.|
(I=1ALD + A= 1Aq D
where A, is the instantaneous difference between the
NAC values for the cup audio and the NVC values for
the cup visual, and A is the instantaneous difference

between the NAC values for the cup audio and the NVC
values for the dog visual.

A3)
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Visual model

We included one additional model, the visual model,
which considers only the visual in the estimate of looking
preference. The rationale behind this model was a check
to see how much of the infant data could be accounted
for solely by visual change (as indexed by NVC values),
given that infants have been shown to look towards
sudden visual movement (Henderson, 2005). The formula
for this visual model was simply the NVC values for the
cup visual divided by the sum of the NVC values for the
cup and dog visuals.

Finally, we smoothed the output of all models by
using a running average across X frames, where X was
20 or 40.® This was done to limit the speed at which the
model shifted its looking preferences, in order to be
more consistent with the infant data. That is, although
the model can shift looking preference quite suddenly,
the proportion of infants never makes such a drastic
shift from looking to the cup to the dog video.

Results and discussion

The proportion of infants looking towards the cup video
by frame and audio condition is presented in Figure 3.
On average, infants hearing the cup audio looked
predominantly at the cup video (58%), whereas those
hearing the dog audio looked predominately at the dog
video (52%). However, this looking was not uniformly
distributed throughout the trial. Notably, infants in both
conditions looked towards the unsynchronized video at
times (e.g. frame 181 or 241). How well, then, do the
models capture these infant results?

Figure 4 presents a graph of the correlation model for
each condition (top panel) and the visual model (bottom
panel), with the smoothing for both models set at 20.°
Interestingly, the audiovisual model estimates seem to
line up with the infant data: the cup audio tends to be
above the dog audio in similar places for both infants
and the model. Thus, for example, a higher proportion
of infants looked at the non-target on frames 181 and
241, similar to the models. Furthermore, the infant and
model preferences for the matching video seem strongest
at times when the audio for the other track was silent
(e.g. frame 121 or 211; see Figure 2, bottom panel),
suggesting a role for onset and offset of sounds in
audiovisual integration. So at least qualitatively, the signal-
level models appear to relate well to infant behaviour.
The next section provides a statistical analysis of the
amount of variance accounted for by each of the models
at each of two different levels of smoothing.

8 In order to maintain the time-lock with the infant data, this smoothing
was always centred on the original frame. Thus, a smoothing of 20 actually
included the prior 10 and the next 10 frames (for a total of 21 frames).
° Although the ‘best fit’ models are presented, the other models
produced similar results. Detailed data from them is reported in the
next section.
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Figure 3 Proportion of infants looking to the cup video across the trial and condition.

Regression analysis including visual and audiovisual
models

Table 1 gives the results of a two-step hierarchical regression
analysis of the variance accounted for by each model.
The first step of this analysis finds the amount of variance
ascribable to the visual model at each level of smoothing.
The second step examines the amount of variance accounted
for by the combination of the visual model with each
audiovisual model for that level of smoothing. Reported
are values of R® as well as the change in variance (AR?)
accounted for by that step.

The overall results are small but significant, and all
correlations are in the positive direction. They reveal that
the visual model accounted for between 7.61 and 21.2%
of the variance in infant performance, and the various

Table 1 Linear regression: amount of variance in infant
data accounted for by condition, model type, and amount
of smoothing

Cup Dog
Model type R’ AR’ R AR?
Step 1 — Visual
Smoothing 10 0761*%*%  0761** 1235%* 1235%*
Smoothing 20 .0924%* 0924%* 2121%* 2121%*
Step 2 — Smoothing 10
Additive .1058** .0328** 1362%* .0094*
Correlation 10 .1080**  .0319** 1507%* .0272%*
Correlation 20 .0852%* .0091* 1791%* .0556%*
Step 2 — Smoothing 20
Additive 1184%* .0260** 2251%* .0130*
Correlation 10 .1424**  0500%* .2254* .0133*
Correlation 20 .1019* .0095* 2361%* .0240**

*p <.05, ** p<.001.
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incarnations of the audiovisual models accounted for an
additional .91 to 5.56% of the variance, with the correlation
models performing the best. Although the amount of
variance accounted for is not large, recall that the effect
sizes for infants are also quite small. Presumably the
models should not do any better than the infants.

In addition, the trials were quite long; it is likely that
the models account for different amounts of variance
depending on whether it is early or late in the trials. That
is, infants may be swayed more by visual or audiovisual
information early in the trial and then become habituated
to that information as the trial moves on. Indeed, a
weakness of the current models is that they do not
habituate. Thus, a strong audiovisual correlation later in
the trial has as much of an effect as one earlier in the trial,
yet this may not be the case for infants, who become bored
even with factors that were once highly interesting. For
this reason, we split the data into 5-second non-overlapping
blocks and conducted an analysis of variance (ANOVA)
for the effect of block on each of the models. By including
block in these analyses, the visual models plus either
audiovisual model accounted for a far greater amount of
the variance. For example, with smoothing at 20 and
using the correlation model across a time window of 10,
the whole analysis now accounted for 55.35% of the
variance, F(11, 396) =44.62, p <.0001, R*>=.5535, in
the cup condition and for 57.99% of the variance, F(11,
396) =49.70, p <.0001, in the dog condition, with a
peak of 72.33% of the variance accounted for in block 1.
Besides the dramatic increase in the amount of variance
accounted for, the most notable finding of this analysis
was the significant block effect for both the cup, F(2,
396) = 68.88, p < .0001, and the dog, F(2, 396) = 60.50,
p <.0001, condition, as well as the significant block by
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Figure 4 Proportion looking to the cup video across the trial and condition. (Top) Correlation models (smoothing 20). (Bottom)

Visual model (smoothing 20).

model interactions, all Fs > 30, p < .0001. Because of these
large block effects across all the models, we repeated
the previous analysis, separating by block (see Table 2).

As suggested by the block by model interaction, the
amount of variance accounted for by each model varies
widely over the course of the trials. For the dog audio
conditions, the visual model accounts for the variance
particularly well early in the trial (Block 1): 72.3% of the
variance with smoothing 20. In contrast, for the cup
audio, the visual estimate was much smaller early in the
trial but accounted for 63.5% of the variance late in the
trial (Block 3). Among the audiovisual models, the
correlation model seemed the most successful, especially
early on (Block 1), when it accounted for up to 28.6%
(cup audio, smoothing 20) of the variance. The additive
model, by contrast, was especially poor, accounting for
no additional portion of the variance early in the model
(Block 1). Finally, combining the visual with the audiovisual

© 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

models accounted for up to 66.4% and 80.3% of the variance
for the cup (Block 3) and dog (Block 1) conditions,
respectively, with unique contributions for the audiovisual
models of up to 28.6% (Block 1) of the variance.

General discussion and future directions

The principal finding of our work is that a significant
portion of the variance in infants’ average looking behaviour
in an audiovisual speech task can be accounted for by
signal-level perceptual analysis, particularly when time is
included as a factor.!® Thus, a model of visual salience,

10 Because these data are at the group level, it is possible that no
individual is actually following the audiovisual correlations. Instead,
when the correlation is high, the likelihood of any given infant looking
away is simply less than that when the correlation is low.
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Table 2 Linear regression: amount of variance in infant data
accounted for by block, condition, model type, and amount
of smoothing

Cup Dog
Model type R AR’ R AR?
Block 1
Step 1 — Visual
Smoothing 10 .0034 .0034 .5332%*  5332%*
Smoothing 20 .0024 .0024 JJ232%% 0 7232%*
Step 2 — Smoothing 10
Additive 0169%*  .0135%* .6921* .0094*
Correlation 10 .0623*%*  0589** S5341%*% 0272%*
Correlation 20 .0157* .0123* S5637*% .0556%*
Step 2 — Smoothing 20
Additive .0024 .0000 .8027**  .0795*
Correlation 10 A171%% 0 1147%* J7316%*% - .0084
Correlation 20 2879%*  2855%* 7233** 0001
Block 2
Step 1 — Visual
Smoothing 10 .0002 .0002 2048** - 2948%*
Smoothing 20 .0025 .0025 3589%%  3589%*
Step 2 — Smoothing 10
Additive .0002 .0000 3972%*% [1024%*
Correlation 10 .0385% .0383** 4086** 1138%*
Correlation 20 .0407* .0405%* 3766%% .0818**
Step 2 — Smoothing 20
Additive .0028 .0003 A4043%*%  0454%*
Correlation 10 .0373* .0348* A4971** 1382%*
Correlation 20 .0026 .0001 A573%% 0984%*
Block 3
Step 1 — Visual
Smoothing 10 A351%* 4351 0122%%  0122%*
Smoothing 20 6353%*  6353%* 0712%%  0712%*
Step 2 — Smoothing 10
Additive 4352%% 0001 .0130 .0008
Correlation 10 A795%% - .0444%* 0567*% .0445%*
Correlation 20 4387%% .0036 0647** 0525%*
Step 2 — Smoothing 20
Additive .6354 .0001 .0832 .0120
Correlation 10 .6642%*  (0289** 2429%%  1717**
Correlation 20 .6516%*  .0163* .0827 0115

*p<.05, ** p<.001.

based on nothing more than coarse visual change, was
able to account for more than 72% of infants’ per-
formance, at times. Audiovisual models, based on the
correlation between auditory and visual change or on
instantaneous changes in the match between audio and
visual activity, were similarly able to account for an
additional 28.79% of the variation in infants’ looking
behaviour, at times.

The changing variance accounted for by these models
over time would appear to indicate a change in the infants’
weighting of factors throughout the trial. One audio
condition (the dog condition) exclusively matched the
visual model early on (21%) and then switched to matching
the audiovisual model, whereas the other audio condition
(the cup condition) exclusively matched the audiovisual
model first and then switched to matching the visual
model (64%), possibly as a result of habituation from so
much initial time spent looking at the audiovisual
match. Such results would suggest that infants’ tendency
to notice audiovisual synchrony may be determined by a

© 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

complex non-linear interaction resulting from habituation
of their sensitivity to visual motion and/or audiovisual
correlations as the trial proceeds. Future models will
explicitly include habituation and non-linear interactions
between signal-level models.

Furthermore, given that issues with sensory integration
seem to lie at the heart of many childhood disorders,
including autism (Brock, Brown, Boucher & Rippon,
2002), and that attentional difficulties can lead to severe
impairments in learning (Tsao, Liu & Kuhl, 2004), it
would seem of critical theoretical and clinical importance
to understand the basic mechanisms underlying individual
differences in perceptual attention. Future simulations
will explore the nature of such differences by modelling
how infants who weigh visual or auditory factors heavily
would behave as compared with infants who are particu-
larly sensitive to audiovisual information.

Conclusion

These models are just the first step in our signal-level
exploration of infants” audiovisual integration: they don’t
include habituation or examine the nature of individual
differences. Nonetheless, these simple signal-level audio-
visual models combined with a coarse estimate of visual
change accounted for a significant portion of the variance
in looking times. We now have a new means by which
one can examine the mechanisms underlying audiovisual
speech integration by infants.
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